
www.manaraa.com

Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-018-0871-z

Closing the Loop – Predictive Lifted Newton Trajectory Tracking
Algorithm

Mariusz Janiak1 · Łukasz Chojnacki1

Received: 30 October 2017 / Accepted: 11 May 2018
© The Author(s) 2018

Abstract
This paper introduces a predictive closed-loop trajectory tracking algorithm for nonlinear control systems that combines
the Model Predictive Control (MPC) approach with the task priority Lifted Newton method. The optimal control problem
within MPC is replaced by the open-loop trajectory tracking problem formulated as a constrained motion planning
problem. Constraints reflect the distance in the task space between the system current output and the desired trajectory.
The original constrained motion planning problem is replaced by an unconstrained one addressed in an extended control
system representation, and solved with the task priority version of the Lifted Newton method. All other steps of the MPC
scheme remains unchanged. Performance of the closed-loop predictive Lifted Newton trajectory tracking algorithm has been
demonstrated with series of computer simulations for the kinematic car type platform.

Keywords Predictive scheme · Trajectory tracking · Lifted Newton · Task priority

1 Introduction

Typically, in the perspective of robotics, the trajectory
tracking problem is considered as a feedback motion control
task [21, 23, 24, 36]. The trajectory tracking problem
regarded as a planning problem, has been studied in [20]
where the continuation method has been used for design
of the so-called reproduction equation, and then plan
a trajectory of the rolling ball in the task space. In [30],
the Endogenous Configuration Space Approach (ECSA)
has been applied to a continuous inverse problem, where
the author has defined an instantaneous kinematics of
a nonholonomic system equipped with a Jacobian inverse
algorithm. The ECSA framework has been also used
in [17] to formulate the trajectory tracking problem as an
open-loop planning problem. The original motion planning
through waypoints problem [18], has been expanded with

� Mariusz Janiak
mariusz.janiak@pwr.edu.pl

Łukasz Chojnacki
lukasz.chojnacki@pwr.edu.pl

1 Department of Cybernetics and Robotics, Faculty of
Electronics, Wrocław University of Science and Technology,
Z. Janiszewskiego 11/17, 50-320 Wrocław, Poland

the additional task responsible for dragging the tracking
error to zero between wayponits. Formally, the trajectory
tracking problem has been defined as a constrained motion
planning problem [19], whereas constraints reflect the
instantaneous distance between the system output and the
desired trajectory. Constraints have been incorporated into
the system through extending the system by extra state
variables. As a result, the trajectory tracking problem
has been made equivalent to an unconstrained motion
planning problem formulated in the extended system, and
solved with the task priority version of the Lifted Newton
method [1, 16]. In this context, the task priority Lifted
Newton algorithm can be regarded as “multiple shooting”
version of a ECSA Jacobian algorithm [31].

Due to lack of feedback in the approach presented in [17]
, the evolution of the system’s actual state is not considered
in the solution of the tracking problem. As a consequence,
in the presence of disturbances, model mismatch and
uncertainties the quality of the resultant trajectory tracking
may deteriorate dramatically. This makes the open-loop
algorithm not suitable for a real-life scenarios. In order to
“close the feedback loop”, the well known Model Predictive
Control (MPC) scheme [4, 11, 26, 27] can be applied. In
general, MPC refers to a class of iterative control algorithms
that make use of the explicit process model to predict
the future response of a system over a certain prediction

(2019) 93:669–686

/ Published online: 23 May 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0871-z&domain=pdf
http://orcid.org/0000-0002-5258-5296
mailto: mariusz.janiak@pwr.edu.pl
mailto: lukasz.chojnacki@pwr.edu.pl

www.manaraa.com

horizon. At each iteration, based on the most recent
measurements, the MPC attempts to solve a finite horizon
open-loop optimal control problem subject to system
dynamics and constraints involving states and controls. The
first part of the optimized control trajectory defined over
control horizon is implemented at the real system. Then, the
whole procedure is repeated with a prediction and a control
horizons moved one step forward. A good introduction to
theoretical and practical issues associated with the MPC
method can be found in [5, 7, 10, 32, 33]. Recently, thanks
to increasing computation capabilities and novel efficient
algorithms [15, 29], the MPC is gaining popularity also in
the field of robotics [9, 13, 14, 22]. The combination of
the predictive scheme along with ECSA has been discussed
in [25], where the general algorithm of finding inverse
kinematics for mobile manipulators has been presented.

An integration of the MPC scheme with the open-loop
trajectory tracking algorithm [17] is straightforward. It
consists of replacing a certain optimal control problem by
a constrained motion planning problem which by definition
is formulated over a finite time horizon [17]. At each MPC
iteration, the most currently observed system state serves
as an initial value in the planning problem. The problem
is solved with the use of the task priority Lifted Newton
algorithm. All other steps remain unchanged. Unfortunately,
this modification entails the need to review a theoretical
aspects of a closed-loop algorithm stability and robustness.
These issues will be a subject of a further publication.
In order to verify a theoretical concept, the closed-
loop algorithm will be tested by computer simulations.
Nevertheless, we expect that the modified MPC will have
similar properties as the standard moving horizon MPC.

The design of a robust stabilizing control laws for
robotics systems is challenging mainly due to their complex
nonlinear dynamics (eg. nonholonomic and underactuated
systems), possible model uncertainties, disturbances, and
physical constraints imposed on the system state and
controls. Compared to the traditional techniques such
as a Model-Based Control and an Adaptive Control,
the Model Predictive Control can be considered as
a general framework for a wide class of linear and
nonlinear control systems, that offers robustness and good
dynamic performance while ensuring operation within
certain physical limits. Since the MPC tuning parameters
are directly related to a certain cost function, it is relatively
easy to achieve good performance, in contrast to the the
traditional techniques for which the control laws are not
intuitively obtained. The main drawback of MPC schemes
is related to its computational complexity which limits
application areas only to a sufficient slow or a simple
dynamic systems.

To demonstrate differences between the optimization-
based MPC and the presented approach, let’s consider as

an example a problem of finding solution of systems of
nonlinear equations. This problem can be solved using
a class of the gradient based methods such as ECSA,
or can be formulated as an unconstrained optimization
problem and solved by applying optimization methods [12,
28]. The ECSA is a Newton-type method, thus is local,
assumes system of class C1, demonstrates a very fast local
convergence rate, and a low computational complexity.
Incorporation of constraints is intricate and involves
an additional effort [19]. Optimization methods are global,
but suffer from a local minima, assume system of class
C2, demonstrate fast convergence rate at the expense
of increased computational complexity. Incorporation of
constraints of any type is straightforward. A more in-depth
comparison of these two methods in the context of MPC,
will be subject of further studies.

The organization of this paper is the following. Section 2
introduces the trajectory tracking problem formulation
along with all necessary theoretical preliminaries. Section 3
presents derivation of the open-loop task priority Lifted
Newton algorithm. The composition of the predictive
scheme with open-loop trajectory tracking algorithm is
discussed in Section 4. An application of the closed-
loop predictive algorithm to selected trajectory tracking
problems is demonstrated in Section 5. The paper concludes
with Section 6.

2 Problem Formulation

We shall examine a nonlinear control system with output{
q̇ � f (q, u),

y � k(q) = (
k1(q), . . . , kr (q)

)T .
(1)

characterized by generalized coordinates q ∈ R
n and

velocities q̇ ∈ R
n, where f (q, u) and k(q) are continuously

differentiable, y ∈ R
r denotes a vector of task space

coordinates, u ∈ R
m denotes a control vector, and m ≤

n. Admissible control functions u(·) are chosen Lebesgue
square integrable, u(·) ∈ U ⊂ L2

m[tb, te], on a time interval
T � [tb, te], where te > tb. It will be assumed that the state
trajectory q(t) � ϕq0,t

(
u(·)) exists for every initial state

q0 = q(0), and every control u(·) ∈ U .
The trajectory tracking problem consists in finding

a control function u(·) driving the system (1) over a
prescribed time interval [0, Tt], such that the system output
trajectory y(t) is as close as possible to a given demanded
task space trajectory yd(t) ∈ R

r , thus∫ Tt

0

(
y(t) − yd(t)

)T (
y(t) − yd(t)

)
dt ≤ ε, (2)

where ε is a small positive number.

J Intell Robot Syst (2019) 93:669–686670

www.manaraa.com

The formula (2) specifies a system trajectory, and can be
regarded as a constraint imposed on the system behavior.
Thus, the trajectory tracking problem can be defined as
a constrained motion planning problem. To solve such
a problem the idea presented in [19] can be adopted. This
approach consists in replacing the constrained problem by
an unconstrained one addressed in an extended control
system representation. The constraint (2) can be included
into the system (1) by adding a set of extra state variables
x ∈ R

r ,{
q̇ = f (q, u), y = k(q),

ẋ � g(q),
, (3)

where

g(q) �

⎛
⎜⎝

(y1 − yd1)
2

...
(yr − ydr)

2

⎞
⎟⎠ =

⎛
⎜⎜⎝

(
k1(q) − yd1

)2

...(
kr(q) − ydr

)2

⎞
⎟⎟⎠ . (4)

Theoretically, the proposed form of vectorial-constraints (4)
can introduce unnecessary singularities at locations in the
search space U , for which elements of the system task space
trajectory yi(t) fully coincide with equivalent elements of
the desired trajectory ydi(t), resulting in

∫ Tt

0 gi

(
q(t)

)
dt =

0, i = 1, . . . , r . This issue can be solved in two ways, either
by including to g(q) only active constraints [8] or by the
Jacobian regularization [19]. Practically, mainly because of
control discretization, numerical integration and errors, such
a situation is very rare.

Now, assuming that x0 � x(t0) = 0, the constrained
motion planning problem becomes equivalent to the
unconstrained problem of finding a control function u(·) in
the extended system (3), such that

||Eq0,x0,Tt

(
u(·))|| ≤ ε (5)

where Eq0,x0,Tt

(
u(·)) is the end-point map of the extended

system (3)

Eq0,x0,Tt

(
u(·)) � x(Tt) = ψx0,Tt

(
u(·)),

and x(t) � ψx0,t

(
u(·)) represents the flow of the extra state

equation.

3 Open-Loop Algorithm

Following the idea presented in [17], the motion planning
problem (5) will be solved using a task priority version
of the Lifted Newton Method [1]. This method involves
a number of intermediate variables that correspond to the
original system’s states si � q(ti), i = 1 . . . N , defined at
time grid spanned over a given time horizon T = [tb, te]
tb = t0 < . . . < ti < ti+1 < . . . < tN = te. (6)

In order to simplify an algorithm implementation, we
assume fixed time intervals ti+1 − ti = τ , τ = T/N , but
this assumption is not mandatory. Further on we will use the
superscript to denote the interval to which a marked element
belongs. Intermediate states can be grouped into a vector
s � (s1, . . . , sN) ∈ R

nN . Moreover, for a further notational
simplicity, and only for this purpose, we define s0 � q(t0)

that refers to the original system’s initial state, and should
not be regarded as intermediate state. On the time grid (6)
we perform a piecewise continuous control discretization

ui(t) � χ[ti−1,ti)(t)P
i(t)λi,

χ[tb,te)(t) �
{

1, tb ≤ t < te
0, otherwise,

where P i(t) � block diag{P i
1(t), . . . , P i

m(t)} is a block
diagonal matrix comprising certain basic orthogonal func-
tions P i

k (t) in the Hilbert control space L
2
m[ti−1, ti],

Fig. 1 Discontinuity issue of the
system flow

J Intell Robot Syst (2019) 93:669–686 671

www.manaraa.com

Fig. 2 Task space error

λi � (λi
1,1, . . . λ

i
1,M, . . . , λi

m,1, . . . λ
i
m,M)T ∈ R

mM denotes
a collection of control parameters, and M is the length of
each control series chosen in such a way that Mm ≥ n. As
a result of discretization, the control space is represented by
R

mMN , thus u(t) depends only on a finite number of control
parameters λ � (λ1, . . . , λN)T .

The flow of the original system (1) is divided into
a number of subsequent flows,

hi(si−1, λi) � ϕsi−1,τi
(λi), (7)

calculated separately on each interval [ti−1, ti], τi ∈
[ti−1, ti]. This breaks the system flow and make it
discontinuous – see Fig. 1. This is an inherent nature of all
“multiple shooting” techniques including the Lifted Newton

Method. The flow of the system preserves continuity, when
the following relation holds

Hs0,T (s, λ) − s = 0, (8)

where

Hs0,T (s, λ) �

⎛
⎜⎜⎜⎜⎝

h1(s0, λ1)

h2(s1, λ2)
...

hN(sN−1, λN)

⎞
⎟⎟⎟⎟⎠ ,

is a function that describes the evolution of states of
the original system due to the applied controls. Each

Fig. 3 Constraints violation
function

J Intell Robot Syst (2019) 93:669–686672

www.manaraa.com

intermediate state is linked with the point in task space by
the associated error function

e(s) �

⎛
⎜⎜⎜⎝

e1(s1)

e2(s2)
...

eN(sN)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

k(s1) − yd(t1)

k(s2) − yd(t2)
...

k(sN) − yd(tN)

⎞
⎟⎟⎟⎠ . (9)

These functions define the distance of the system’s output
to selected waypoints defined along the desired trajectory –
see Fig. 2.

To proceed further, similarly to Eq. 7, we divide the flow
of the remaining part of the extended system (3) into a
sequence of independent sub-flows

li (λi) � ψx0,τi
(λi),

calculated separately on each time interval [ti−1, ti], τi ∈
[ti−1, ti], where i = 1, . . . , N . Again, we can group
these sub-flows, and define the function that describes the
evolution of the extra state variables due to the applied
controls

G0,T (λ) �

⎛
⎜⎜⎜⎝

l1(λ1)

l2(λ2)
...

lN (λN)

⎞
⎟⎟⎟⎠ , (10)

where G0,T : R
mMN −→ R

rN . This function reflects
the constraints violation (4) at the end of each interval, as
presented in Fig. 3.

Any constraints violation g(q) �= 0 drives the evolution
of the flow G0,T (λ) moving away extra state variables from
0.

The trajectory tracking problem consists in determining
the control parameters λ and the intermediate states s so
that the system’s flow preserves continuity (8), task-space
error (9) vanishes

Fs0,T (s, λ) �
(

Hs0,T (s, λ) − s

e(s)

)
= 0, (11)

Fs0,T : RnN ×R
mMN −→ R

nN+rN , and constraints are not
violated

G0,T (λ) = 0. (12)

The original trajectory tracking problem has been trans-
formed into two conjugated, finite dimensional, nonlinear
root finding problems. The former, the primary task (11)
reflects the motion through waypoints problem and reach-
ing the terminal point, the later, the secondary task (12)
maintains the trajectory tracking constraints. Task separa-
tion along with task priorities should ensure continuity of
the system’s flow even when the constraints are violated.

To solve these two conjugated problems (11) and (12)
with distinct priorities the combination of the Newton

method and the task priority approach [31] will be applied.
A conventional Newton algorithm(

s(κ + 1)

λ(κ + 1)

)
=

(
s(κ)

λ(κ)

)
+

(
γs
s(κ)

γλ
λ(κ)

)
, (13)

iterates from an initial guess
(
s(0), λ(0)

)
until either κ >

κmax or a sum ||Fs0,T (s, λ)|| + ||G0,T (λ)|| ≤ T OL(ε),
where κmax defines the maximum number of algorithm’s
iterations, T OL(ε) is a total error tolerance, γs and γλ are
damping factors, and (
s,
λ) represents the Newton step.
The algorithm’s convergence can be improved when the
dumping factors γs and γλ are calculated in each iteration
basing on formulas presented in [3]

γs(κ) � min

{√
2γ

||
s(κ)||2 , 1

}
, γλ(κ) � min

{√
2γ

||
λ(κ)||2 , 1

}
,

where the tolerance γ > 0 is a design parameter of
the algorithm. According to the task priority approach [31]
calculation of the Newton step length involves using
a Jacobian inverse along with the projection onto the
Jacobian kernel(

s(κ)

λ(κ)

)
� −JF

s0,T

#(
s(κ), λ(κ)

)
Fs0,T

(
s(κ), λ(κ)

)
− Xs0,T

(
s(κ), λ(κ)

)
JG

0,T

#(
λ(κ)

)
G0,T

(
λ(κ)

)
, (14)

where JF
s0,T

(s, λ) � ∂F
s0,T

∂(s,λ)
(s, λ) and JG

0,T (λ) �
∂G0,T

∂λ
(λ) represent the primary and the secondary task

Jacobian, respectively, the symbol [·]# denotes a right
Jacobian inverse, and Xs0,T (s, λ) is the projection onto
ker JF

s0,T
(s, λ), so

Xs0,T (s, λ) � IN(n+mM) − JF
s0,T

(s, λ)
#
JF

s0,T
(s, λ),

and I stands for the unit matrix. In accordance with [17], the
part of the system (14) referring to the primary task can be
decomposed into the following system of linear equations

Hs0,T (s, λ)−s+
(

∂Hs0,T (s, λ)

∂s
− In·N

)

s+ ∂Hs0,T (s, λ)

∂λ

λ = 0,

e(s) + ∂e(s)

∂s

s = 0,

which after the transformation take the form

s = −M−1(Hs0,T (s, λ) − s
)

︸ ︷︷ ︸
z

−M−1 ∂Hs0,T (s, λ)

∂λ︸ ︷︷ ︸
Z

λ,

0 = e(s) + ∂e(s)

∂s
z︸ ︷︷ ︸

w

+ ∂e(s)

∂s
Z︸ ︷︷ ︸

W

λ. (15)

where the index κ has been dropped for notational

convenience, and the matrix M �
(

∂H
s0,T

(s,λ)

∂s
− InN

)
is

lower triangular, square and invertible [1]. Because the

J Intell Robot Syst (2019) 93:669–686 673

www.manaraa.com

Fig. 4 Task priority Lifted
Newton trajectory tracking
algorithm

J Intell Robot Syst (2019) 93:669–686674

www.manaraa.com

matrix Wr×mMN is not square, a general solution of Eq. 15
involves the Jacobian inverse with projection [34]

λ = −W#Pw + Xζ, (16)

where W#P � WT (WWT)−1 stands for the Moore-
Penrose pseudoinverse, X � (ImMN − W#PW) denotes the
projection onto kerW, and ζ ∈ R

mMN is any element in the
parametrized control space. This element will be determined
by the secondary task (12), with the use of the Jacobian
inverse

λ = − JG
0,T

#P
(λ)G0,T (λ)︸ ︷︷ ︸
v

.

For the secondary task, Eq. 16 needs to be satisfied only
within the kernel of W#P , so by projecting (16) onto kerW,
we end up with

Xζ = −Xv,

assuming that by definition the projection is idempotent
XX = X, and XW#P = 0. Finally, the formula for
calculating the Newton step, including two tasks with
different priorities has the following form{

λ = −W#Pw − Xv

s = z + Z
λ
. (17)

For more technical details on the structure of the matrices
∂H

s0,T
(s,λ)

∂s
,

∂H
s0,T

(s,λ)

∂λ
, ∂G0,T (λ)

∂λ
and ∂e(s)

∂s
, please refer

to [17]. Beside ∂e(s)
∂s

, which can be calculated analytically,
the derivatives of the remaining matrices have to be
calculated numerically, using e.g. the forward sensitivity
analysis method [2]. To this aim, two additional systems of
differential equations

̇i � Af (t)
i,
i(0) � In, (18)

and{
�̇i � Af (t)�i + Bf (t)P i(t), �i(0) � 0n×mM,

ϒ̇i � Ag(t)�
i, ϒi(0) � 0r×mM,

(19)

need to be integrated along with Eq. 3 over each time
interval, where i = 1, . . . N . Matrices in Eqs. 18 and 19
come from the linear approximation of Eq. 3 along the
control-trajectory pair

(
u(t), q(t)

)
, so

Af (t) �
∂f

(
q(t), u(t)

)
∂q

, Bf (t) �
∂f

(
q(t), u(t)

)
∂u

,

Ag(t) �
∂g

(
q(t)

)
∂q

.

The sensitivity of the system (3) to initial conditions is
calculated as

∂hi(si−1, λi)

∂si−1
�
(ti),

while the sensitivity to control parameters

∂hi(si−1, λi)

∂λi
� �(ti),

∂li(λi)

∂λi
� ϒ(ti).

The algorithm presented in Fig. 4 summarizes the
described Lifted Newton procedure with task priorities.

The most time-consuming part of the algorithm is related
to solving at each algorithm’s step, a set of ordinary
differential Eqs. 3, 18, and 19. Fortunately, these equations
are not dependent across the time intervals, thus can be
solved concurrently. In computation it is recommended to
set initial values of the intermediate state si so that

yd(ti) = k(si), i = 1, . . . , N . (20)

Typically, the initial values of the control parameters λ0

should be chosen sufficiently small, not too far from the
solution of the problem (5).

4 Closing the Loop

By design, the algorithm derived in the previous section
is an open-loop trajectory tracking algorithm. It solves
the tracking problem on entire time horizon without any
feedback from the system. In the presence of any internal
or external disturbances the final tracking quality may by
significantly reduced, what makes the open-loop algorithm
unsuitable for practical applications. In order to overcome
these difficulties, the model predictive control method
will be adopted. Originally, it is an iterative, a feedback
control technique based on the online solution of a finite
horizon open-loop optimal control problem subject to
system dynamics and constraints. The basic principle of the
predictive scheme is illustrated in Fig. 5,

it may be summarized as follows. At each control step,
the most currently observed system state serves as the initial
value in the optimization problem. The problem is solved
on a predefined interval called the prediction horizon Tp.
Only a part of the resulting solution is applied to the system
over a chosen one-step control horizon Tc. In the next step,
the whole procedure is repeated with the one-step control
and prediction horizons moving forward and new measured
initial state.

In the proposed approach, instead of solving a certain
optimization problem, the root finding problem (5) will be
solved using the open-loop trajectory tracking algorithm
presented in Section 3. All other steps remain unchanged.
The general procedure of the closed-loop predictive control
algorithm equipped with the Lifted Newton method is
summarized in Fig. 6.

The algorithm iterates over an interval [0, Tt] on which
the desired trajectory yd(t) is defined. An acquisition
process of the most recent system state q0 is represented

J Intell Robot Syst (2019) 93:669–686 675

www.manaraa.com

Fig. 5 Principle of the
predictive scheme

by the getMeasure() function (line 5). Typically, such
a function returns a state estimate with a noise, not
a real state of the system. In the next step, the Lifted
Newton algorithm solves a finite time trajectory tracking
problem defined on the prediction horizon Tp (line 6).
Using the resulting control parameters λ, only the first part
covering the control horizon Tc of the control signals u(·)
is calculated and applied to the original system (line 7).
Finally, the algorithm repeats the whole procedure moving
the time horizon one step forward (line 8), and using the
new values of λ and s. In case of the piecewise constant
control discretication, a control parameters vector λ may
by updated in each iteration, in such a way to discard
parameters associated with first interval Tc, switch others λ

one interval Tc left, and fill the last missing interval with
values taken from a previous one.

The procedure presented in Fig. 6 does not include
any optimizations which are required for a real-time
application [6]. Mainly, it turns out that the computations
of the new values of the control signals can largely be

prepared without knowledge of the value of actual system
state. Thus assumption can be made that the approximation
of the feedback control is instantly available at the time
that actual state is known. However, after feedback has been
delivered, the full computing time is needed to prepare the
next iteration. The procedure presented in the Fig. 6 will
be used only to verify a theoretical idea. The performance
of the closed-loop algorithm will be tested with computer
simulations. The formal proof of the algorithm stability and
robustness will be a subject of a further research.

5 Computer Simulations

In this section we shall present results of a series of
computer simulations that have been performed in order
to verify the performance of the closed-loop predictive
trajectory tracking algorithm based on the task priority
Lifted Newton method. For comparison, along with the
presented algorithm we have tested a traditional model

Fig. 6 Closed-loop tracking
algorithm

J Intell Robot Syst (2019) 93:669–686676

www.manaraa.com

Fig. 7 Kinematic car

predictive controller provided by the ACADO toolkit [15].
Both algorithms have been applied to several trajectory
tracking problems of the kinematic car type platform. The
kinematic car is shown in Fig. 7,

its motion can be described by the following control
system reflecting the exclusion of the side-slip of the
platform⎧⎨
⎩

q̇1 = u1 cos q3 cos q4, q̇2 = u1 sin q3 cos q4,

q̇3 = u1 sin q4, q̇4 = u2,

y = k(q) = (q1, q2, q3),

(21)

where (q1, q2) denote the robot position in the XY plane,
q3 is the platform orientation, and q4 represents the front
wheels direction angle. The output function selects the part

of the state that reflects the platform position and orientation
on the plane, therefore the discussed problems will be
defined with respect to these platform coordinates. The
desired trajectory is defined over the horizon Tt = 2πs as
a Lissajous curve with ratio 0.5⎧⎨
⎩

yd1 = 5 sin(t + π
2),

yd2 = 5 sin(2t),

yd3 = arctan2
(
10 cos(2t), 5 cos(t + π

2)
) + r(t),

where r(t) represents a regularization function that makes
orientation component continous

r(x) =
{

2π π
4 ≤ x (mod 2π) < 3π

4 ,

0 otherwise.

The platform starts from the origin of the coordinate system
q0 = (0, 0, 0, 0).

Control signals of the ECSA algorithm have the form
of piecewise constant signals, with initial value of control
parameters set to λi

1,j = 2, and λi
2,j = 0, i = 1, . . . , N ,

j = 1, . . . ,M , resulting in the platform going straight-
forward. The control interval is set to Tc = 0.01s. The
initial value of the intermediate states have been chosen
to meet the condition (20), with not bounded elements set
to zero. Parameters of the ECSA algorithm are picked up
as γ = 0.7, and the tolerance error T OL = 10−3. The
algorithm has been implemented in Matlab R2014a 64-bit,
and tested on the PC with Intel Core i7-2600K 3.40GHz
and the 8GB RAM platform hosted by the Ubuntu Linux
16.04LTS 64-bit. Results of computations for various values

Fig. 8 ECSA 1: Tp = 0.5,
N = 5, M = 10, κmax = 1,
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6
−1

−0.5

0

0.5

e
2

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

t [s]

e
3

0 1 2 3 4 5 6

−20

−10

0

10

20

30

40

50

t [s]

u 1

0 1 2 3 4 5 6

−40

−20

0

20

40

60

80

t [s]

u 2

J Intell Robot Syst (2019) 93:669–686 677

www.manaraa.com

Fig. 9 ECSA 2: Tp = 0.5,
N = 5, M = 10, κmax = 2,
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [
m

]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6
−0.6
−0.4
−0.2

0
0.2

e
2

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

t [s]

e
3

0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

80

t [s]

u 1

0 1 2 3 4 5 6

−20

0

20

40

60

80

t [s]

u 2

of parameters Tp, N , M , κmax selected in such a way that the

condition Tc = Tp

NM
holds, excluding measurement noise,

are displayed in Figs. 8, 9, 10, 11, 12 and 13.
Simulation results in which a uniform random noise

qnoise has been added to the state feedback signal are
presented in Figs. 14 and 15.

The order of the plots is the following. The first
plot presents the resulting platform paths corresponding
to the solution of the tracking problem. The continuous
line represents the real path of the platform, the dashed
line represents the desired trajectory. The neighbor plot,
illustrates the tracking error components: the platform

Fig. 10 ECSA 3: Tp = 0.5,
N = 10, M = 5, κmax = 1,
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6
−2

0

2

e
2

0 1 2 3 4 5 6

−1

0

1

t [s]

e
3

0 1 2 3 4 5 6
−100

−50

0

50

100

t [s]

u 1

0 1 2 3 4 5 6

−100

−50

0

50

100

t [s]

u 2

J Intell Robot Syst (2019) 93:669–686678

www.manaraa.com

Fig. 11 ECSA 4: Tp = 0.5,
N = 10, M = 5, κmax = 2,
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6

−1
−0.5

0
0.5

e
2

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

t [s]

e
3

0 1 2 3 4 5 6
−150

−100

−50

0

50

100

t [s]

u 1

0 1 2 3 4 5 6

−100

−50

0

50

100

t [s]

u 2

position and orientation in the XY plain. Two plots in the
bottom row show a control signals u1 and u2, respectively,
that were generated by the closed-loop tracking algorithm.
The plots in Figs. 16, 17, 18 and 19 illustrate the algorithm’s
convergence. The continuous line represents the primary

task error, the dashed line represents the secondary task
error which corresponds to the constraints violation.

Obtained results have shown that the derived predictive
algorithm is able to track a trajectory in task space very
efficiently. This is manifested by a low tracking error, as

Fig. 12 ECSA 5: Tp = 1.0,
N = 10, M = 10, κmax = 1,
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6
−1

−0.5

0

e
2

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

t [s]

e
3

0 1 2 3 4 5 6
−30

−20

−10

0

10

20

30

40

50

t [s]

u 1

0 1 2 3 4 5 6

−40

−20

0

20

40

60

80

t [s]

u 2

J Intell Robot Syst (2019) 93:669–686 679

www.manaraa.com

Fig. 13 ECSA 6: Tp = 1.0,
N = 5, M = 20, κmax = 1,
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6
−0.5

0

0.5

e
2

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

t [s]

e
3

0 1 2 3 4 5 6
−50

−40

−30

−20

−10

0

10

20

30

40

t [s]

u 1

0 1 2 3 4 5 6

−40

−30

−20

−10

0

10

20

30

t [s]

u 2

well as a very good algorithm’s convergence and stability,
also in case of the relatively high state feedback random
noise (ECSA 7: qnoise = ±(0.1m, 0.1m, 5◦, 0◦), and
ECSA 8: qnoise = ±(0.5m, 0.5m, 10◦, 0◦)). The algorithm
preserves these properties even when the root finding solver

performs only one step in each MPC iteration, a prediction
horizon is relatively short Tp = 0.5s, and algorithm’s
parameters are selected appropriately (ECSA 1: N =
5, M = 10 vs ECSA 3: N = 10, M = 5). The tracking
quality and stability of the predictive algorithm can be

Fig. 14 ECSA 7: Tp = 0.5,
N = 5, M = 10, κmax = 1,
qnoise = ±(0.1m, 0.1m, 5◦, 0◦)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6

−1

−0.5

0

e
2

0 1 2 3 4 5 6
−1.5

−1
−0.5

0

t [s]

e
3

0 1 2 3 4 5 6

−50

0

50

t [s]

u 1

0 1 2 3 4 5 6

−40

−20

0

20

40

60

80

t [s]

u 2

J Intell Robot Syst (2019) 93:669–686680

www.manaraa.com

Fig. 15 ECSA 8: Tp = 0.5,
N = 5, M = 10, κmax = 1,
qnoise = ±(0.5m, 0.5m, 10◦, 0◦)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
real

0 1 2 3 4 5 6

−4

−2

0

e
1

0 1 2 3 4 5 6
−1

−0.5

0

0.5

e
2

0 1 2 3 4 5 6
−1.5

−1
−0.5

0
0.5

t [s]

e
3

0 1 2 3 4 5 6

−40

−30

−20

−10

0

10

20

30

40

50

t [s]

u 1

0 1 2 3 4 5 6
−60

−40

−20

0

20

40

60

80

t [s]

u 2

100 200 300 400 500 600

2

4

6

8

10

12

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

200 400 600 800 1000 1200

2

4

6

8

10

12

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

Fig. 16 Primary and secondary task error (left: ECSA 1, right: ECSA 2)

100 200 300 400 500 600

5

10

15

20

25

30

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

200 400 600 800 1000 1200

2

4

6

8

10

12

14

16

18

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

Fig. 17 Primary and secondary task error (left: ECSA 3, right: ECSA 4)

J Intell Robot Syst (2019) 93:669–686 681

www.manaraa.com

100 200 300 400 500 600

2

4

6

8

10

12

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

100 200 300 400 500 600

2

4

6

8

10

12

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

Fig. 18 Primary and secondary task error (left: ECSA 5, right: ECSA 6)

improved either by increasing the number of solver steps
executed in each iteration (compare ECSA 1: κmax = 1 with
ECSA 2: κmax = 2, and ECSA 3: κmax = 1 with ECSA 4:
κmax = 2) or by extending the prediction horizon along with
the dimension of the control parametrization (see ECSA 5:
Tp = 1s, N = 10, M = 10, κmax = 1, and ECSA 6:
Tp = 1s, N = 5, M = 20, κmax = 1). Such algorithm
properties were expected, and in this respect are similar
to the properties of the classical MPC algorithms. Slightly
surprising is the fact that the closed-loop algorithm behaves
better when the dimension of the control parametrization
M is greater than the number of intermediate states N –
compare ECSA 1 and ECSA 3. Due to the properties of
the Lifted Newton algorithm, a different behavior might
be expected. A closer look at the Figs. 16, 17, 18 and 19
shows that the moving horizon of the predictive algorithm
significantly disturbs convergence of the primary task that
is responsible for maintaining continuity of the system flow.
In each algorithm step, waypoints are moving forward along
with the desired trajectory, which results in an increase in
the distance between waypoints and respective intermediate
states. Therefore, above a certain number of intermediate
states, the increase in task space error may exceed the rate
of convergence of the control algorithm, resulting in losing

stability. In this case the only remedy is to perform more
solver steps in each iteration. It is worth stressing that the
trajectory tracking task has a lower priority, thus according
to the task priority approach it operates inside the Jacobian
kernel of the primary task. The kernel dimension depends
directly on the dimension of the control parametrization M .
For greater M , the root finding algorithm with priorities
has more degrees of freedom whereby provides a better
solution.

In case of the NMPC algorithm, the trajectory tracking
problem is formulated in terms of the following optimal
control problem

min
u(·) J

(
u(·)) =

∫ τ+Tp

τ

(
y(t)−yd(t)

)T
P

(
y(t)−yd(t)

)+u(t)T Qu(t) dt

+ (
y(T) − yd(T)

)T
P

(
y(T) − yd(T)

)
, (22)

subject to Eq. 21, where weight matrices P = 100 · I3,
and Q = 0.005 · I2. Control signals have the same form
of piecewise constant signals, with the same initial values,
and the control interval Tc as in the ECSA algorithm. The
problem (22) has been implemented in C++ language [35]
with use of the master branch of the ACADO Toolkit (the
short hash commit 21be39c), and the g++ v5.4.0 compiler.
Tests have been carried out on the same machine. Results of

100 200 300 400 500 600

2

4

6

8

10

12

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

100 200 300 400 500 600

2

4

6

8

10

12

14

κ = number of iterations

||F
x0

, T
(s

, λ
)||

, |
|G

0,
 T

(λ
)||

||F
x0, T

(s, λ)||

||G
0, T

(λ)||

Fig. 19 Primary and secondary task error (left: ECSA 7, right: ECSA 8)

J Intell Robot Syst (2019) 93:669–686682

www.manaraa.com

Fig. 20 ECSA 1 vs NMPC 1
(Tp = 0.5, N = 50, κmax = 1),
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
1

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
2

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

t [s]

e
3

NMPC
ECSA

0 1 2 3 4 5 6

0

50

100

150

200

250

300

350

t [s]

u 1

NMPC
ECSA

0 1 2 3 4 5 6

−40

−20

0

20

40

60

80

t [s]

u 2

NMPC
ECSA

computations for various values of parameters Tp, N , κmax ,
with and without noise qnoise, are displayed in Figs. 20, 21,
22 and 23 along with corresponding ECSA results.

In each case, the following condition holds Tc = Tp

N
. The

plots layout is the same as before.

Comparison of the ECSA and the NMPC algorithms
for the same simulation conditions (Tp, Tc, κmax) in
the ideal case without state disturbances, shows that
the NMPC behaves better than the ECSA algorithm.
The NMPC algorithm convergences faster, and generates

Fig. 21 ECSA 2 vs NMPC 2
(Tp = 0.5, N = 50, κmax = 2),
without noise

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [

m
]

desired
NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
1

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
2

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

t [s]

e
3

NMPC
ECSA

0 1 2 3 4 5 6

0

50

100

150

200

250

300

350

t [s]

u 1

NMPC
ECSA

0 1 2 3 4 5 6
−40

−20

0

20

40

60

80

100

120

140

t [s]

u 2

NMPC
ECSA

J Intell Robot Syst (2019) 93:669–686 683

www.manaraa.com

Fig. 22 ECSA 7 vs NMPC 3
(Tp = 0.5, N = 50, κmax = 1),
qnoise = ±(0.1m, 0.1m, 5◦, 0◦)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [
m

]

desired
NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
1

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
2

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

t [s]

e
3

NMPC
ECSA

0 1 2 3 4 5 6
−50

0

50

100

150

200

250

300

350

t [s]

u 1

NMPC
ECSA

0 1 2 3 4 5 6

−40

−20

0

20

40

60

80

t [s]

u 2

NMPC
ECSA

smother trajectories (ECSA 1 vs NMPC 1, and ECSA 2
vs NMPC 2). Due to the nature of the ECSA algorithm,
that defines the trajectory tracking task as a low priority,
secondary task, its resulting performance may be slightly
worse than the NMPC algorithm. The deterioration of the

trajectory tracking quality in the initial simulation phase
of the NMPC 2, when the control algorithm performs
two optimization steps in each iteration, is unexpected
and counterintuitive. In this case the resulted trajectory
starts to resemble the ECSA 2 trajectory, what raise the

Fig. 23 ECSA 8 vs NMPC 4
(Tp = 0.5, N = 50, κmax = 1),
qnoise = ±(0.5m, 0.5m, 10◦, 0◦)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

q
1
 [m]

q
2
 [
m

]

desired
NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
1

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

e
2

NMPC
ECSA

0 1 2 3 4 5 6

−4

−2

0

t [s]

e
3

NMPC
ECSA

0 1 2 3 4 5 6
−100

−50

0

50

100

150

200

250

300

t [s]

u 1

NMPC
ECSA

0 1 2 3 4 5 6
−150

−100

−50

0

50

100

150

200

t [s]

u 2

NMPC
ECSA

J Intell Robot Syst (2019) 93:669–686684

www.manaraa.com

question about the optimality of the ECSA solution. This
will be the subject of further investigation. In the initial
phase of simulation, the NMPC control signals have a
larger amplitude than the ECSA, mainly due to a faster
convergence and lack of a predefined control constraints.
Both algorithms, when reach the desired trajectory, behave
similar and generate a comparable control signals.

Interesting results are given by simulations that include
feedback noise. A relatively low, uniform random noise
qnoise = ±(0.1m, 0.1m, 5◦, 0◦) only slightly affects the
resulted trajectories and control signals generated by both
algorithms (ECSA 7 and NMPC 3). The noise propagation
can be observed on the error and control plots. Both
algorithms are stable, and convergent fast, however ECSA
algorithm seems to produce less noisy signals, especially
e2 and u2. In the presence of larger noise qnoise =
±(0.5m, 0.5m, 10◦, 0◦), this observation becomes more
evident – compare ECSA 8 and NMPC 4. The ECSA
behaves much better than NMPC, the trajectory is smother,
and the error and control signals are much less noisy in the
amplitude and frequency range. The ECSA algorithm can
be considered as a low pass filter for feedback noise, due to
its slower convergence rate than the NMPC algorithm.

Since all simulations have been carried out without
any control constraints, the control signals have significant
amplitudes in the initial phase of the platform movement,
when tracking error is relatively large. Such controls can be
difficult to implement in a real object. To make resulting
controls closer to practical applications, the constraints can
be included using the approach presented in [19]. This will
be a subject of further research.

6 Summary

Following the MPC approach, a predictive closed-loop
trajectory tracking algorithm has been presented. The
trajectory tracking problem has been formulated as two
conjugated root finding problems. In each iteration of
the MPC scheme, the solution of the tracking problem
is provided by the open-loop task priority Lifted Newton
method. The performance of the closed-loop algorithm
has been tested with computer simulations. The computer
simulations have shown that the presented algorithm is
able to track desired trajectory very efficiently even in the
presence of a relatively large state feedback noise. This
is manifested by a very good algorithm’s convergence,
stability and robustness. The tracking quality and stability
of the presented predictive algorithm can be improved in
the very similar way as with a traditional MPC, either
by extending the prediction horizon or by increasing the
number of solver steps executed in each iteration. Due to
the properties of the Lifted Newton algorithm, it is better

to increase the dimension of the control parametrization
M than number of intermediate states N , so the algorithm
has more degrees of freedom whereby provides a better
solution. Comparison of the ECSA with the NMPC
algorithm shows that in close proximity to the desired
trajectory both algorithms behaves similar, however the
NMPC converges faster at the expense of larger initial
control signals values, and greater sensitivity to the state
disturbances. The ECSA algorithm seems to be more robust
to feedback noise, and in the presence of control constraints
may show equivalent convergence rate.

As a further research we plan to develop a formal proof
of the closed-loop algorithm’s stability and robustness, and
implement the real-time iteration scheme. The presented
algorithm is open to further improvements. A more general
framework can be defined that involves multiple tasks with
different priorities e.g. tracking different trajectories by
subsystems, respecting the state and control bounds, and
minimizing the control energy.

Acknowledgements This research was supported by the Wrocław
University of Science and Technology under a statutory research
project. The authors are indebted to the anonymous referees whose
comments unveiled advantages and limitation of the approach
presented in this paper.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Albersmeyer, J., Diehl, M.: The lifted newton method and its
application in optimization. SIAM J. on Optimization 20(3),
1655–1684 (2010)

2. Alexe, M., Sandu, A.: Forward and adjoint sensitivity analysis
with continuous explicit Runge-Kutta schemes. Appl. Math.
Comput. 208(2), 328–346 (2009)

3. Amrein, M., Wihler, T.P.: An adaptive newton-method based on
a dynamical systems approach. Commun. Nonlinear Sci. Numer.
Simul. 19(9), 2958–2973 (2014)

4. Biegler, L.T.: A survey on sensitivity-based nonlinear model
predictive control. IFAC Proceedings 46(32), 499–510 (2013)

5. Cueli, J.R., Bordons, C.: Iterative nonlinear model predictive
control. Stability, robustness and applications. Control. Eng. Pract.
16(9), 1023–1034 (2008)

6. Diehl, M., Bock, H.G., Schlöder, J.P.: A real-time iteration scheme
for nonlinear optimization in optimal feedback control. SIAM J.
Control. Optim. 43(5), 1714–1736 (2005)

7. Diehl, M., Findeisen, R., Allgower, F., Bock, H.G., Schloder,
J.P.: Nominal stability of real-time iteration scheme for nonlinear

J Intell Robot Syst (2019) 93:669–686 685

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

model predictive control. IEE Proceedings - Control Theory Appl.
152(3), 296–308 (2005)

8. Divelbiss, A.W., Wen, J.T.: A path space approach to nonholo-
nomic motion planning in the presence of obstacles. IEEE Trans.
Robot. Autom. 13(3), 443–451 (1997)

9. van Duijkeren, N., Verschueren, R., Pipeleers, G., Diehl, M.,
Swevers, J.: Path-Following NMPC for Serial-Link Robot
Manipulators Using a Path-Parametric System Reformulation. In:
2016 European Control Conference (ECC), pp. 477–482 (2016)

10. Findeisen, R., Imsland, L., Allgower, F., Foss, B.A.: State and
output feedback nonlinear model predictive control: an overview.
Eur. J. Control. 9(2), 190–206 (2003)

11. Grne, L., Pannek, J.: Nonlinear Model Predictive Control: Theory
and Algorithms. Springer Publishing Company, Incorporated,
New York (2013)

12. Grosan, C., Abraham, A.: A new approach for solving nonlinear
equations systems. IEEE Trans. Syst., Man, Cybernetics - Part A:
Syst. and Humans 38(3), 698–714 (2008)

13. Guerreiro, B.J., Silvestre, C., Cunha, R., Pascoal, A.: Trajectory
Tracking Nonlinear Model Predictive Control for Autonomous
Surface Craft. In: 2009 European Control Conference (ECC),
pp. 1311–1316 (2009)

14. Guerreiro, B.J., Silvestre, C., Cunha, R., Pascoal, A.: Trajectory
tracking nonlinear model predictive control for autonomous
surface craft. IEEE Trans. Control Syst. Technol. 22(6), 2160–
2175 (2014)

15. Houska, B., Ferreau, H.J., Diehl, M.: ACADO toolkit—An
Open-source framework for automatic control and dynamic
optimization. Optim. Control Appl. Meth. 32, 298–312 (2011)

16. Janiak, M.: Lifted Newton Motion Planning Algorithm. In: 2015
10th International Workshop on Robot Motion and Control
(Romoco), pp. 223–228 (2015)

17. Janiak, M.: From Motion Planning through Waypoints to Open-
Loop Trajectory Tracking Algorithm. In: 2017 11Th International
Workshop on Robot Motion and Control (Romoco), pp. 142–147
(2017)

18. Janiak, M., Tchoń, K.: Motion Planning through Waypoints for
a Skid-Steering Mobile Platform. In: 2015 10th International
Workshop on Robot Motion and Control (Romoco), pp. 58–63
(2015)

19. Janiak, M., Tchon, K.: Constrained motion planning of nonholo-
nomic systems. Syst. Control Lett. 60(8), 625–631 (2011)

20. Karpińska, J., Tchoń, K.: Continuation Method Approach
to Trajectory Planning in Robotic Systems. In: 2011 16th
International Conference on Methods and Models in Automation
and Robotics (MMAR), pp. 51–56 (2011)

21. Kowalczyk, W., Michałek, M., Kozłowski, K.: Trajectory tracking
control with obstacle avoidance capability for unicycle-like
mobile robot. Bulletin of the Polish Academy of Sciences. Tech.
Sci. 60(3), 537–546 (2012)

22. Maurović, I., Baotić, M., Petrović, I.: Explicit Model Predictive
Control for Trajectory Tracking with Mobile Robots. In: 2011
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), pp. 712–717 (2011)

23. Mazur, A., Cholewiński, M.: Implementation of factitious force
method for control of 5R manipulator with skid-steering platform

REX. Bulletin of the Polish Academy of Sciences. Tech. Sci.
64(1), 71–80 (2016)

24. Morin, P., Samson, C.: Stabilization of Trajectories for Systems
on Lie Groups. Application to the Rolling Sphere. In: 17th IFAC
World Congress, pp. 508–513 (2008)

25. Muszyniski, R., Jakubiak, J.: On Predictive Approach to Inverse
Kinematics of Mobile Manipulators. In: 2007 IEEE International
Conference on Control and Automation, pp. 2423–2428 (2007)

26. Qin, S., Badgwell, T.A.: A survey of industrial model predictive
control technology. Control. Eng. Pract. 11(7), 733–764 (2003)

27. Qin, S.J., Badgwell, T.A.: An Overview of Nonlinear Model
Predictive Control Applications, pp. 369–392. Basel, Birkhäuser
Basel (2000)

28. Quarteroni, A., Sacco, R., Saleri, F.: Nonlinear Systems and
Numerical Optimization, pp. 285–331. Springer, Berlin (2007)

29. Quirynen, R., Vukov, M., Zanon, M., Diehl, M.: Autogenerating
microsecond solvers for nonlinear mpc: a tutorial using acado
integrators. Optim. Control Appl. Method 36(5), 685–704 (2015)

30. Ratajczak, A.: Trajectory reproduction and trajectory tracking
problem for the nonholonomic systems. Bull. Polish Academy of
Sci. 64(1), 63–70 (2016)

31. Ratajczak, A., Tchoń, K.: Multiple-task motion planning of non-
holonomic systems with dynamics. Mech. Sci. 4(1), 153–166
(2013)

32. Rawlings, J.B.: Tutorial overview of model predictive control.
IEEE Control. Syst. 20(3), 38–52 (2000)

33. Sistu, P.B., Bequette, B.W.: Nonlinear model-predictive control:
Closed-loop stability analysis. AIChE J 42(12), 3388–3402 (1996)

34. Tchoń, K., Jakubiak, J.: Endogenous configuration space
approach to mobile manipulators: a derivation and performance
assessment of Jacobian inverse kinematics algorithms. Int. J.
Contr. 76(14), 1387–1419 (2003)

35. Łukasz, C.: Example of model predictive control simulation.
https://bitbucket.org/lukych92/acado mpc simulation

36. Walsh, G., Tilbury, D., Sastry, S., Murray, R., Laumond, J.P.:
Stabilization of trajectories for systems with nonholonomic
constraints. IEEE Trans. Autom. Control 39(1), 216–222 (1994)

Mariusz Janiak is an Assistant Professor at Department of Cybernetics
and Robotics in the Wrocław University of Science and Technology.
He received his PhD in Control Engineering and Robotics from the
Wrocław University of Science and Technology in 2010. His research
interest includes constrained motion planning of nonholonomic robotic
systems, nonlinear control, and real-time distributed control systems.
He has participated in several EU and national funded research
projects: LIREC, RobREx, ReMeDi. He has also served as reviewer
for multiple relevant journals and conferences.

Łukasz Chojnacki received B.S. and M.S. in Control Engineering
and Robotics from Wroclaw University of Science and Technology,
Wroclaw, Poland in 2016 and 2017, respectively. His current research
interests include the area of mobile robots, in particular, motion
planning, trajectory tracking, navigation, and mapping.

J Intell Robot Syst (2019) 93:669–686686

https://bitbucket.org/lukych92/acado_mpc_simulation

www.manaraa.com

© 2018. This work is published under
http://creativecommons.org/licenses/by/4.0/(the “License”). Notwithstanding

the ProQuest Terms and Conditions, you may use this content in accordance
with the terms of the License.

	Closing the Loop – Predictive Lifted Newton Trajectory Tracking Algorithm
	Abstract
	Abstract
	Introduction
	Problem Formulation
	Open-Loop Algorithm
	Closing the Loop
	Computer Simulations
	Summary
	Acknowledgements
	Open Access
	Publisher's Note
	References

